Cart (Loading....) | Create Account
Close category search window
 

Comparison of the Growth Si-based Crystalline Silicon Carbide (SiC) by Chemical Vapor Deposition (CVD) using Carbon Monoxide (CO) and Treated Carbon Dioxide (CO2)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lim, A.Y.K. ; Univ. of Sci. Malaysia, Penang ; Ibrahim, K.

Abstract Silicon carbide (SiC) has received special attention in recent years because of its remarkable properties. This work presents the investigation on the growth of Si-based SiC using carbon monoxide (CO) compared to the treated carbon dioxide (CO2) as reported earlier. Experiments results has revealed the existence of Si-C bond and the bond formed on silicon (Si) surface through the characterization using X-ray diffraction (XRD) and Raman spectroscopy (RS). Thickness study is carried out show that growth using carbon monoxide has a thicker layer of SiC at the same growth condition compared to treated carbon dioxide. The reflective index (RI) of the growth SiC was measured. This growth technique is promising and shows great potential of producing relatively desirable quality SiC films for electronic devices fabrication.

Published in:

Semiconductor Electronics, 2006. ICSE '06. IEEE International Conference on

Date of Conference:

Oct. 29 2006-Dec. 1 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.