By Topic

A Monolithic Voltage-Boosting Parallel-Primary Transformer Structures for Fully Integrated CMOS Power Amplifier Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Kyu Hwan An ; Georgia Inst. of Technol., Atlanta ; Younsuk Kim ; Ockgoo Lee ; Ki Seok Yang
more authors

In this paper, a novel monolithic voltage-boosting parallel-primary transformer is presented for the fully integrated CMOS power amplifier design. Multiple primary loops are interweaved in parallel to combine the AC currents from multiple power devices while the higher turn ratio of a secondary loop boosts AC voltages of the combined primary loops at the load of the secondary loop. The proposed interweaved structure is much more compact and separable from power devices, avoiding potential instability. To verify the feasibility of this power combining method, the fully integrated CMOS switching power amplifier was implemented in a standard 0.18-mum technology. The power amplifier successfully demonstrated a measured output power of 1.3 W and a measured power added efficiency (PAE) of 41% to a 50-Omega load with a 3.3-V power supply at 1.8 GHz operation.

Published in:

Radio Frequency Integrated Circuits (RFIC) Symposium, 2007 IEEE

Date of Conference:

3-5 June 2007