By Topic

Fault Location in Power Distribution Systems Using a Learning Algorithm for Multivariable Data Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mora-Florez, J. ; Technol. Univ. of Pereira, Pereira ; Barrera-Nuez, V. ; Carrillo-Caicedo, G.

This paper proposes alternatives to improve the electric power service continuity using the learning algorithm for multivariable data analysis (LAMDA) classification technique to locate faults in power distribution systems. In this paper, the current and voltage waveforms measured during fault events are characterized to obtain a set of descriptors. These sets are analyzed by using the projection pursuit exploratory data analysis to obtain the best projection in the alpha* and beta* axes. Next, these projections are used as input data of five LAMDA nets which locate the fault in a power distribution system. The proposed methodology demands a minimum of investment from utilities since it only requires measurements at the distribution substation. The information used to estimate the fault location is the system configuration, line parameters, and data from recorders installed at the distribution substation.

Published in:

Power Delivery, IEEE Transactions on  (Volume:22 ,  Issue: 3 )