Cart (Loading....) | Create Account
Close category search window
 

Optimal Estimate of Transmission Line Fault Location Considering Measurement Errors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuan Liao ; Kentucky Univ., Lexington ; Kezunovic, M.

Various transmission line fault location algorithms have been proposed in the past depending on the measurements available. These algorithms perform well when the measurements utilized are accurate; they may yield erroneous results when the measurements contain considerable errors. In some cases, there are redundant measurements available for fault location purposes, and it may be possible to design an optimal estimator for the fault location based on nonlinear estimation theories. This paper aims at proposing a possible method for deriving an optimal estimate of the fault location that is capable of detecting and identifying the bad measurement data, minimizing the impacts of the measurement errors and thus significantly improving the fault location accuracy. The solution is based on the distributed parameter line model and thus fully considers the effects of shut capacitances of the line. Since field data are not available, case studies based on simulated data are presented for demonstrating the effectiveness of the new method.

Published in:

Power Delivery, IEEE Transactions on  (Volume:22 ,  Issue: 3 )

Date of Publication:

July 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.