By Topic

Support Vector Machine for Classification of Voltage Disturbances

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Axelberg, Peter G.V. ; Univ. Coll. of Boras, Boras ; Gu, I.Y.-H. ; Bollen, M.H.J.

The support vector machine (SVM) is a powerful method for statistical classification of data used in a number of different applications. However, the usefulness of the method in a commercial available system is very much dependent on whether the SVM classifier can be pretrained from a factory since it is not realistic that the SVM classifier must be trained by the customers themselves before it can be used. This paper proposes a novel SVM classification system for voltage disturbances. The performance of the proposed SVM classifier is investigated when the voltage disturbance data used for training and testing originated from different sources. The data used in the experiments were obtained from both real disturbances recorded in two different power networks and from synthetic data. The experimental results shown high accuracy in classification with training data from one power network and unseen testing data from another. High accuracy was also achieved when the SVM classifier was trained on data from a real power network and test data originated from synthetic data. A lower accuracy resulted when the SVM classifier was trained on synthetic data and test data originated from the power network.

Published in:

Power Delivery, IEEE Transactions on  (Volume:22 ,  Issue: 3 )