By Topic

A Queueing-Theoretic Foundation of Available Bandwidth Estimation: Single-Hop Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiliang Liu ; Bloomberg L.P., New York ; Ravindran, K. ; Loguinov, D.

Most existing available-bandwidth measurement techniques are justified using a constant-rate fluid cross-traffic model. To achieve a better understanding of the performance of current bandwidth measurement techniques in general traffic conditions, this paper presents a queueing-theoretic foundation of single-hop packet-train bandwidth estimation under bursty arrivals of discrete cross-traffic packets. We analyze the statistical mean of the packet-train output dispersion and its mathematical relationship to the input dispersion, which we call the probing-response curve. This analysis allows us to prove that the single-hop response curve in bursty cross-traffic deviates from that obtained under fluid cross traffic of the same average intensity and to demonstrate that this may lead to significant measurement bias in certain estimation techniques based on fluid models. We conclude the paper by showing, both analytically and experimentally, that the response-curve deviation vanishes as the packet-train length or probing packet size increases, where the vanishing rate is decided by the burstiness of cross-traffic.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:15 ,  Issue: 4 )