By Topic

A Bayesian Network Model for the Diagnosis of the Caring Procedure for Wheelchair Users with Spinal Injury

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Athanasiou, M. ; Univ. of Surrey, Guildford ; Clark, J.Y.

This paper describes a probabilistic causal model for the caring procedure to be followed on wheelchair users with spinal injury. Uncertainty in the caring procedure arises mostly from incomplete information about patient findings (i.e. the signs and symptoms) due to loss of sensation and movement caused by the spinal cord injury. As a result, it may not be easy to assess the extent of a condition -- and, thus, make an accurate diagnosis. Bayesian networks are used for diagnostic reasoning because they offer a way of conducting probabilistic inference about the conditions associated with the caring procedure in the face of uncertainty. The network structure and numerical parameters are based on data elicited from the qualified staff nurses and literature of the National Spinal Injury Centre, Stoke Mandeville Hospital, Aylesbury, UK. We also present the model and report the results of the diagnostic performance tests using the AgenaRisk Bayesian network package.

Published in:

Computer-Based Medical Systems, 2007. CBMS '07. Twentieth IEEE International Symposium on

Date of Conference:

20-22 June 2007