By Topic

On Three Types of Covering-Based Rough Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhu, W. ; Chinese Acad. of Sci., Beijing ; Fei-Yue Wang

Rough set theory is a useful tool for data mining. It is based on equivalence relations and has been extended to covering-based generalized rough set. This paper studies three kinds of covering generalized rough sets for dealing with the vagueness and granularity in information systems. First, we examine the properties of approximation operations generated by a covering in comparison with those of the Pawlak's rough sets. Then, we propose concepts and conditions for two coverings to generate an identical lower approximation operation and an identical upper approximation operation. After the discussion on the interdependency of covering lower and upper approximation operations, we address the axiomization issue of covering lower and upper approximation operations. In addition, we study the relationships between the covering lower approximation and the interior operator and also the relationships between the covering upper approximation and the closure operator. Finally, this paper explores the relationships among these three types of covering rough sets.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:19 ,  Issue: 8 )