By Topic

Hot Topic Extraction Based on Timeline Analysis and Multidimensional Sentence Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kuan-Yu Chen ; Nat. Taiwan Univ., Taipei ; Luesak Luesukprasert ; Seng-cho T. Chou

With the vast amount of digitized textual materials now available on the Internet, it is almost impossible for people to absorb all pertinent information in a timely manner. To alleviate the problem, we present a novel approach for extracting hot topics from disparate sets of textual documents published in a given time period. Our technique consists of two steps. First, hot terms are extracted by mapping their distribution over time. Second, based on the extracted hot terms, key sentences are identified and then grouped into clusters that represent hot topics by using multidimensional sentence vectors. The results of our empirical tests show that this approach is more effective in identifying hot topics than existing methods.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:19 ,  Issue: 8 )