Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Synchronization of spin-transfer oscillators driven by stimulated microwave currents

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Grollier, J. ; UMR CNRS-Thales, Palaiseau ; Boulle, O. ; Cros, V. ; Fert, A.

This article presents numerical simulations to study the synchronization of electrically connected STOs (spin transfer oscillators). The motion of the magnetizations mj of the layers F2 of a collection of different STOs were calculated. Each mj is considered as a macrospin without any dipolar interaction with the other mi. Its time evolution is given by a Landau-Lifschitz-Gilbert equation including a standard spin transfer term. The current through each junction is the sum of the injected dc current and the ac component due to the microwave current induced by the oscillations of all the other STOs. Simulations of the dynamics are performed using a fourth-order Runge-Kutta algorithm. It is shown that it is possible to synchronize a network of spin-transfer oscillators electrically connected to a load. The synchronization depends on the dispersion of the individual frequencies, on the coupling parameters and the delays induced by microwave cables in experimental setups. Under certain conditions, the synchronization can be complete.

Published in:

Magnetics Conference, 2006. INTERMAG 2006. IEEE International

Date of Conference:

8-12 May 2006