Cart (Loading....) | Create Account
Close category search window
 

Sensitivity of the Kurtosis Statistic as a Detector of Pulsed Sinusoidal RFI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
De Roo, R.D. ; Univ. of Michigan, Ann Arbor ; Misra, S. ; Ruf, C.S.

A new type of microwave radiometer detector that is capable of identifying low-level pulsed radio frequency interference (RFI) has been developed. The Agile Digital Detector can discriminate between RFI and natural thermal emission signals by directly measuring other moments of the signal than the variance that is traditionally measured. The kurtosis is the ratio of the fourth central moment of the predetected voltage to the square of the second central moment. It can be an excellent indicator of the presence of RFI. A number of issues that are related to the proper calculation of the kurtosis are addressed. The mean and standard deviation of the kurtosis, in both the absence and the presence of pulsed sinusoidal RFI, are derived. The kurtosis is much more sensitive to short-pulsed RFI-such as from radars-than to continuous-wave RFI. The minimum detectable power for pulsed sinusoidal RFI is found to be proportional to (M 3 N)-1/4, where N is the number of independent samples and M is the number of frequency subbands in the receiver.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 7 )

Date of Publication:

July 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.