Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Flexible Baseband Analog Circuits for Software-Defined Radio Front-Ends

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

This paper presents a novel approach to design a digitally programmable low pass filter (LPF) and variable gain amplifier (VGA) intended for a software-defined radio (SDR) front-end. These flexible analog circuits are driven by a network-on-chip (NoC) that is able to set performance parameters like cut-off frequency, selectivity, noise, and gain guaranteeing at any time a near-optimal power/performance trade-off. A design approach is proposed to tackle the challenges imposed by flexibility in analog design. A silicon prototype is realized in 0.13-mum CMOS technology with 1.2-V supply voltage to prove the validity of the proposed solution. The LPF provides a frequency tuning range between 0.35 MHz and 23.5 MHz with an adaptive integrated noise level between 85 muVrms and 163 muVrms whereby the power consumption conveniently varies from 0.72 mW to 21.6 mW according to the required performance. The VGA is made up of two cascaded gain stages and provides a gain range from about 0 dB to 39 dB with a reconfigurable power/bandwidth.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:42 ,  Issue: 7 )