By Topic

Throughput Performance of Generation-Based Network Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Thibault, J.-P. ; Queen''s Univ., Kingston ; Yousefi, S. ; Wai-Yip Chan

Using generations to implement random linear network coding garners benefits such as reduced decoding complexity. However, these benefits can come at the expense of throughput. In this paper, we seek to understand and maximize throughput for generation-based network coding (GBNC). Motivated by the application of network coding to scalable multicast, we consider schemes which result in high probability of decoding success with minimal feedback. We show that the throughput performance of GBNC is highly dependent on the choice of coding parameters and that GBNC becomes advantageous only when the number of source packet exceeds a network-dependent threshold. Results for various network topologies lead to the formulation of throughput-motivated guidelines for the adoption of GBNC.

Published in:

Information Theory, 2007. CWIT '07. 10th Canadian Workshop on

Date of Conference:

6-8 June 2007