By Topic

An Efficient Invariant Image Recognition Methodology using Wavelet Compressed Zernike Moments Denoised through Self Organizing Maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Papakostas, G.A. ; Democritus Univ. of Thrace, Xanthi ; Karras, D.A. ; Mertzios, B.G. ; Boutalis, Y.S.

A new method for extracting feature sets with improved classification performance in image recognition applications is presented in this paper. The main idea is to propose a procedure for obtaining surrogates of the compressed versions of reliable and denoised feature sets without affecting significantly their reconstruction and recognition properties. The surrogate feature vector is of lower dimensionality and thus more appropriate for pattern recognition tasks. The proposed feature extraction method (FEM) combines the advantages of the multiresolution analysis, which is based on the wavelet theory, with the high discriminative nature of Zernike moment sets and the denoising features of Self Organized Topological Maps (SOM). The resulted feature vector is used as a classification feature, in order to achieve high recognition rates in a typical pattern recognition system. The results of the experimental study support the validity and the strength of the proposed method.

Published in:

Imaging Systems and Techniques, 2007. IST '07. IEEE International Workshop on

Date of Conference:

5-5 May 2007