By Topic

Malicious Code Detection and Acquisition Using Active Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moskovitch, R. ; Univ. Ben Gurion, Be''er Sheva ; Nissim, N. ; Elovici, Y.

Detection of known malicious code is commonly performed by anti-virus tools. These tools detect the known malicious code using signature detection methods. Each time a new malicious code is found the anti-virus vendors create a new signature and update their clients. During the period between the appearance of a new unknown malicious code and the update of the signature base of the anti-virus clients, millions of computers might be infected. In order to cope with this problem, new solutions must be found for detecting unknown malicious code at the entrance of a client's computer. We presented here the use of active learning in the acquisition of unknown malicious code. Preliminary Results are encouraging. We are currently in the process of creating a wide test collection of more than 30,000 benign and malicious files to evaluate several active learning criterions.

Published in:

Intelligence and Security Informatics, 2007 IEEE

Date of Conference:

23-24 May 2007