By Topic

The Arizona IDMatcher: A Probabilistic Identity Matching System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Wang, G.A. ; Virginia Polytech. Inst. & State Univ., Blacksburg ; Kaza, S. ; Joshi, S. ; Chang, K.
more authors

Various law enforcement and intelligence tasks require managing identity information in an effective and efficient way. However, the quality issues of identity information make this task non-trivial. Various heuristic based systems have been developed to tackle the identity matching problem. However, deploying such systems may require special expertise in system configuration and customization for optimal system performance. In this paper, we propose an alternative system called the Arizona IDMatcher. The system relies on a machine learning algorithm to automatically generate a decision model for identity matching. Such a system requires minimal human configuration effort. Experiments show that the Arizona IDMatcher is very efficient in detecting matching identity records. Compared to IBM Identity Resolution (a commercial, heuristic-based system), the Arizona IDMatcher achieves better recall and overall F-measures in identifying matching identities in two large-scale real-world datasets.

Published in:

Intelligence and Security Informatics, 2007 IEEE

Date of Conference:

23-24 May 2007