By Topic

Addressing Accuracy Issues in Privacy Preserving Data Mining through Matrix Factorization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jie Wang ; Univ. of Kentucky, Lexington ; Changjiang Zhang

Maintaining data mining accuracy on distorted datasets is an important issue in privacy preserving data mining. Using matrix approximation, we propose several efficient and flexible techniques to address this issue, and utilize unique characteristics of matrix factorization to maintain data pattern. We use the support vector machine classification to compare accuracy maintenance after data distortion by different methods. With better performance than some classical data perturbation approaches, nonnegative matrix factorization and singular value decomposition are considered to be promising techniques for privacy preserving data mining. Experimental results demonstrate that mining accuracy on the distorted data used these methods is almost as good as that on the original data, with added property of privacy preservation. It indicates that the matrix factorization-based data distortion schemes perturb only confidential attributes to meet privacy requirements while preserving general data pattern for knowledge extraction.

Published in:

Intelligence and Security Informatics, 2007 IEEE

Date of Conference:

23-24 May 2007