By Topic

Improved Performance Upper Bounds for Terminated Convolutional Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hichan Moon ; Samsung Electron. Co., Chonan ; Cox, D.C.

In this letter, we propose tight performance upper bounds for convolutional codes terminated with an input sequence of finite length. To obtain the upper bounds, a weight enumerator is defined to represent the relation between the Hamming distance of the coded output and the Hamming distance of the input bits of the code. The upper bounds on frame error rate (FER) and average bit error rate (BER) are obtained from the weight enumerator. A simple method is presented to compute the weight enumerator of a terminated convolutional code based on a modified trellis diagram.

Published in:

Communications Letters, IEEE  (Volume:11 ,  Issue: 6 )