By Topic

Study of CuO Nanoparticle-induced Cell Death by High Content Cellular Fluorescence Imaging and Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Xiaobo Zhou ; Dept. of Radiol., Brigham & Women''s Hosp., Boston, MA ; Jian Chen ; Jinmin Zhu ; Fuhai Li
more authors

To quantify cellular toxic responses to drug treatment or environmental stresses such as nanoparticles, a high throughput imaging modality with automated image analysis protocol is applied. Fluorescence images from human H4 neurogliomal cells exposed to different concentrations of CuO nanoparticles were collected by a high content fluorescence microscopy. A fully automated fluorescent cellular image analysis system has been developed for the consequential image analysis for cell viability. A data-driven background algorithm was used as adaptive multiple thresholding algorithm to categorize the cells into three classes: bright cells, dark cells, and background. Our image analysis approach includes: (1) the scale-space theory, namely Gaussian filtering with proper scale has been applied to the acquired images to generate local intensity maxima within each cell; (2) a novel method for defining local image intensity maxima based on the gradient vector field has been developed; and (3) a statistical model was proposed to overcome the problem of cell segmentation. Our data have shown that the automated image analysis protocol can achieve 90% success rate of cell detection compared to manual procedure. Cellular image analysis further indicated that H4 neuroglioma cells had a dose-dependent toxic response to the insult of CuO nanoparticles.

Published in:

Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on

Date of Conference:

27-30 May 2007