Cart (Loading....) | Create Account
Close category search window

Physical Mechanism and Gate Insulator Material Dependence of Generation and Recovery of Negative-Bias Temperature Instability in p-MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

Impact of gate dielectric processing [plasma and thermal nitridation, nitrogen total dose, effective oxide thickness (EOT)] on negative-bias temperature instability (NBTI) degradation and recovery is studied. The magnitude, field, and temperature dependence of NBTI is measured using no-delay IDLIN method and carefully compared to charge-pumping measurements. Plasma (thin and thick EOT) and thermal (thin EOT) oxynitrides show very similar temperature and time dependence of NBTI generation, which is identical to control oxides and is shown to be due to generation of interface traps. NBTI enhancement for oxynitride films is shown to be dependent on nitrogen concentration at the Si-SiO2 interface and plasma oxynitrides show lower NBTI compared to their thermal counterparts for same total nitrogen dose and EOT. Both fast and slow NBTI recovery components are shown to be due to recovery of generated interface traps. Recovery fraction reduces at lower EOT, while for similar EOT oxynitrides show lower recovery with-respect-to control oxides. NBTI generation and recovery is explained with the framework of reaction-diffusion model.

Published in:

Electron Devices, IEEE Transactions on  (Volume:54 ,  Issue: 7 )

Date of Publication:

July 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.