By Topic

On the Substrate Thermal Optimization in SiC-Based Backside-Mounted High-Power GaN FETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

This paper presents a discussion on the substrate thermal design of backside-mounted power GaN high-electron mobility transistors. After a review on the thermal properties of the relevant materials and their temperature dependences, design guidelines are proposed on the basis of 3-D thermal simulations; the results presented suggest that in SiC-based devices, substrate thinning does not typically improve the thermal resistance or the dynamic thermal behavior. Contrary to what happens in III-V GaAs- or InP-based discrete or integrated devices, therefore, microstrip design on a thinned substrate (as opposed to coplanar design on a comparatively thick substrate) is generally not thermally superior. This should make possible, from the thermal standpoint, the realization of coplanar multifunctional GaN-based monolithic microwave integrated circuits integrating, e.g., low-noise and power stages and avoiding the use of via holes.

Published in:

IEEE Transactions on Electron Devices  (Volume:54 ,  Issue: 7 )