By Topic

Coding for Parallel Channels: Gallager Bounds and Applications to Turbo-Like Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sason, I. ; Technion-Israel Inst. of Technol., Haifa ; Goldenberg, I.

The transmission of coded communication systems is widely modeled to take place over a set of parallel channels. This model is used for transmission over block-fading channels, rate-compatible puncturing of turbo-like codes, multicarrier signaling, multilevel coding, etc. New upper bounds on the maximum-likelihood (ML) decoding error probability are derived in the parallel-channel setting. We focus on the generalization of the Gallager-type bounds and discuss the connections between some versions of these bounds. The tightness of these bounds for parallel channels is exemplified for structured ensembles of turbo codes, repeat-accumulate (RA) codes, and some of their recent variations (e.g., punctured accumulate-repeat-accumulate codes). The bounds on the decoding error probability of an ML decoder are compared to computer simulations of iterative decoding. The new bounds show a remarkable improvement over the union bound and some other previously reported bounds for independent parallel channels. This improvement is exemplified for relatively short block lengths, and it is pronounced when the block length is increased. In the asymptotic case, where we let the block length tend to infinity, inner bounds on the attainable channel regions of modern coding techniques under ML decoding are obtained, based solely on the asymptotic growth rates of the average distance spectra of these code ensembles.

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 7 )