By Topic

Generalized Entropy Power Inequalities and Monotonicity Properties of Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Madiman, M. ; Yale Univ., New Haven ; Barron, A.

New families of Fisher information and entropy power inequalities for sums of independent random variables are presented. These inequalities relate the information in the sum of n independent random variables to the information contained in sums over subsets of the random variables, for an arbitrary collection of subsets. As a consequence, a simple proof of the monotonicity of information in central limit theorems is obtained, both in the setting of independent and identically distributed (i.i.d.) summands as well as in the more general setting of independent summands with variance-standardized sums.

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 7 )