By Topic

Optical Gain and Spontaneous Emission in GaAsSb–InGaAs Type-II “W” Laser Structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The modal gain, modal loss and spontaneous emission of a GaAsSb-based type-II quantum-well (QW) laser structure emitting at 1.3 mum have been experimentally determined as a function of current injection and temperature. The system is able to provide a maximum of 900 cm-1 of material gain from the n = 1 transition despite an electron-hole overlap of 32%, however, the gain from the n = 2 transition becomes dominant before this value can be achieved. The presence of the n = 2 transition has a detrimental effect on device performance, limiting the usable gain from the first transition and increasing the total radiative recombination current. Energy level calculations show that reducing the hole QW to 4 nm would increase the separation of the n = 1 and n = 2 transition by a further 45 meV, reducing the limiting effect of the transition. Carrier distribution spectra show the carriers are in thermal equilibrium for the temperatures and injection currents studied. A low radiative efficiency for this structure is measured due to a very large nonradiative current. We believe a combination of different mechanisms contribute to the nonradiative current.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:43 ,  Issue: 7 )