By Topic

Optical Delay Lines Based on Soliton Propagation in Photonic Crystal Coupled Resonator Optical Waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this paper, a study of optical delay lines based on soliton propagation in coupled resonator optical waveguides is performed. For a given bit rate and required delay, design equations are given that relate the soliton peak power and collision period to the soliton width. To study the influence of higher order linear and nonlinear dispersion, a continuous wave propagation model incorporating these effects is also derived. Using this model, the soliton stability in the presence of higher order dispersion, optical loss and adjacent soliton pulses is numerically verified. It is also shown that soliton-based delay lines can achieve nanosecond delay at a propagation length of a few millimeters due to the high slow down factors that can be obtained.

Published in:

IEEE Journal of Quantum Electronics  (Volume:43 ,  Issue: 7 )