By Topic

Data Mining for Hierarchical Model Creation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. Michael Youngblood ; North Carolina Univ., Charlotte ; Diane J. Cook

In this paper, we examine the problem of learning inhabitant behavioral models in intelligent environments. We maintain that inhabitant interactions in smart environments can be automated using a data-driven approach to generate hierarchical inhabitant models and learn decision policies. To validate this hypothesis, we have designed the ProPHeT decision-learning algorithm that learns a strategy for controlling a smart environment based on sensor observation, power line control, and the generated hierarchical model. The performance of the algorithm is evaluated using real data collected from our MavHome smart home and smart office environments.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:37 ,  Issue: 4 )