By Topic

Planning Product Configurations Based on Sales Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kusiak, A. ; Iowa Univ., Iowa City ; Smith, M.R. ; Zhe Song

Manufacturing companies are focusing on mass customization. Delivering products that meet the requirements of individual customers complicates the production process, and diminishes the benefits of the economy of scale. By exploring commonality among products, this complexity can be significantly reduced. To determine product configurations sought by the customers and to produce them in large quantities, a new approach is proposed. The proposed approach uses a modified k-means clustering algorithm to analyze past sales data for capturing prime product configurations. The most suitable configurations are selected by solving an integer-programming model or using a sorting-based algorithm. The proposed approach was tested with an industrial case study involving sales data of large trucks collected over a period of one year.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:37 ,  Issue: 4 )