By Topic

Evolutionary Rough Feature Selection in Gene Expression Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mohua Banerjee ; Indian Inst. of Technol., Kanpur ; Sushmita Mitra ; Haider Banka

An evolutionary rough feature selection algorithm is used for classifying microarray gene expression patterns. Since the data typically consist of a large number of redundant features, an initial redundancy reduction of the attributes is done to enable faster convergence. Rough set theory is employed to generate reducts, which represent the minimal sets of nonredundant features capable of discerning between all objects, in a multiobjective framework. The effectiveness of the algorithm is demonstrated on three cancer datasets.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:37 ,  Issue: 4 )