By Topic

Flicker Noise and Its Degradation Characteristics Under Electrical Stress in MOSFETs With Thin Strained-Si/SiGe Dual-Quantum Well

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Jiang, Y. ; Inst. of Microelectron., Singapore ; Loh, W.-Y. ; Chan, D.S.H. ; Xiong, Y.Z.
more authors

This letter reports on the low-frequency flicker-noise characteristics in fresh and electrically stressed pMOSFETs with thin strained-Si (~4 nm)/Si0.6Ge0.4 (~4 nm) dual-quantum-well (DQW) channel architectures. Normalized power spectral density (NPSD) of Id fluctuations (SID/Id 2) in fresh DQW devices exhibits significant improvement (by >102times) due to buried channel operation at low Vg. At high Vg, the NPSD enhancement reduces as carriers populate in the parasitic surface channel. Upon electrical stress, noise behavior in DQW devices was found to evolve from being carrier number-fluctuation dominated to mobility- fluctuation dominated. This was accompanied by the observation of a "less-distinct" buried-channel operation, indicating a potential stability issue of the Si/SiGe structure.

Published in:

Electron Device Letters, IEEE  (Volume:28 ,  Issue: 7 )