By Topic

Determination of minority carrier lifetime and effective back surface recombination velocity in BSF silicon solar cells from transient measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jain, S.C. ; Solidstate Physics Laboratory, Delhi, India ; Agarwal, S.K. ; Ray, U.C.

The method of determining the base lifetime ¿B and the effective surface recombination velocity Seff in a BSF solar cell from the transient decay of open-circuit voltage and short-circuit current is extended to include emitter recombinations. If the emitter recombinations in modern Si solar cells are neglected in interpreting the experimental data, the experimental value of Seff is found to be in large error.

Published in:

Electronics Letters  (Volume:19 ,  Issue: 10 )