By Topic

Deformation Models for Image Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Keysers, D. ; German Res. Center for Artificial Intelligence (DFKI Gmbti), Kaiserslautern ; Deselaers, T. ; Gollan, C. ; Ney, H.

We present the application of different nonlinear image deformation models to the task of image recognition. The deformation models are especially suited for local changes as they often occur in the presence of image object variability. We show that, among the discussed models, there is one approach that combines simplicity of implementation, low-computational complexity, and highly competitive performance across various real-world image recognition tasks. We show experimentally that the model performs very well for four different handwritten digit recognition tasks and for the classification of medical images, thus showing high generalization capacity. In particular, an error rate of 0.54 percent on the MNIST benchmark is achieved, as well as the lowest reported error rate, specifically 12.6 percent, in the 2005 international ImageCLEF evaluation of medical image specifically categorization.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 8 )