Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Information Discriminant Analysis: Feature Extraction with an Information-Theoretic Objective

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Nenadic, Z. ; Univ. of California, Irvine

Using elementary information-theoretic tools, we develop a novel technique for linear transformation from the space of observations into a low-dimensional (feature) subspace for the purpose of classification. The technique is based on a numerical optimization of an information-theoretic objective function, which can be computed analytically. The advantages of the proposed method over several other techniques are discussed and the conditions under which the method reduces to linear discriminant analysis are given. We show that the novel objective function enjoys many of the properties of the mutual information and the Bayes error and we give sufficient conditions for the method to be Bayes-optimal. Since the objective function is maximized numerically, we show how the calculations can be accelerated to yield feasible solutions. The performance of the method compares favorably to other linear discriminant-based feature extraction methods on a number of simulated and real-world data sets.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 8 )