By Topic

The Second Order Local-Image-Structure Solid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lewis D. Griffin ; Univ. College London, London

Characterization of second order local image structure by a 6D vector (or jet) of Gaussian derivative measurements is considered. We consider the affect on jets of a group of transformations-affine intensity-scaling, image rotation and reflection, and their compositions-that preserve intrinsic image structure. We show how this group stratifies the jet space into a system of orbits. Considering individual orbits as points, a 3D orbifold is defined. We propose a norm on jet space which we use to induce a metric on the orbifold. The metric tensor shows that the orbifold is intrinsically curved. To allow visualization of the orbifold and numerical computation with it, we present a mildly-distorting but volume-preserving embedding of it into euclidean 3-space. We call the resulting shape, which is like a flattened lemon, the second order local-image-structure solid. As an example use of the solid, we compute the distribution of local structures in noise and natural images. For noise images, analytical results are possible and they agree with the empirical results. For natural images, an excess of locally 1D structure is found.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:29 ,  Issue: 8 )