By Topic

Adaptive Radar Detection: A Bayesian Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
De Maio, Antonio ; Univ. degli Studi di Napoli "Federico II", Napoli ; Farina, Alfonso ; Foglia, G.

In this paper we consider the problem of adaptive radar detection in Gaussian disturbance with unknown spectral properties. To this end we resort to a Bayesian approach based on a suitable model for the probability density function of the unknown disturbance covariance matrix. We devise two detectors based on the GLRT criterion both one-step and two-step. The suggested decision rules ensure the same performance of the non Bayesian GLRT detectors when the size of the training set is sufficiently large. However they significantly outperform the counterparts in the presence of heterogeneous scenarios, where a small number of homogeneous training data is available. The analysis is also supported by results on high fidelity radar data from the KASSPER program.

Published in:

Radar Conference, 2007 IEEE

Date of Conference:

17-20 April 2007