By Topic

Effects of Assembly Process Parameters on the Structure and Thermal Stability of Sn-Capped Cu Bump Bonds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Huffman, A. ; RTI Int., Research Triangle Park ; Lueck, M. ; Bower, C. ; Temple, D.

Non-collapsible Cu-Sn bumps (Cu pillars capped with a thin layer of Sn) have been studied recently as a means to vertically interconnect device layers, achieving 3D integrated circuits. The use of Cu-Sn bump structures is attractive for 3D integration for two primary reasons: 1) the rigid nature of the Cu bump allows for very fine pitch interconnections to be made with less risk of bridging than would exist with collapsible solder bumps, and 2) the joint created when bonding Cu and Cu-Sn bumps remelts at a higher temperature than the formation temperature, which allows for the stacking of multiple layers of devices without disturbing the interconnections achieved in previous bonding events. In order to understand the optimal structure and bonding process for fine pitch Cu-Sn bumps, a study was done to investigate the effects of Sn thickness and bonding pressure on the thickness and chemical composition of the bondline between Cu and Cu-Sn bumps. The thermal stability of the bondline was studied by subjecting bonded test samples to multiple temperature/pressure cycles. The bonding strength was evaluated through die shear tests, and the results were correlated with the parameters of the bump structure and with process parameters.

Published in:

Electronic Components and Technology Conference, 2007. ECTC '07. Proceedings. 57th

Date of Conference:

May 29 2007-June 1 2007