By Topic

Soft SVM and Its Application in Video-Object Extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yi Liu ; Ohio State Univ., Columbus ; Yuan F. Zheng

As a requisite of content-based multimedia technologies, video-object (VO) extraction is a very important yet challenging task. In recent years, classification-based approaches have been proposed to handle VO extraction as a classification problem, for which some promising results have been reported using adaptive neural networks and support vector machines (SVMs). We observe that some training samples in video sequences exhibit partial or ambiguous class memberships, which does not comply with standard membership setups. This problem is addressed in the context of SVM in this paper. By reformulating SVM for the noncrisp classification scenario, we propose a machine which is capable of dealing with binary (or hard) as well as real-valued (or soft) class memberships. The new machine, which is named Soft SVM, is integrated into a VO extraction method, and its effectiveness is demonstrated by the experimental results.

Published in:

IEEE Transactions on Signal Processing  (Volume:55 ,  Issue: 7 )