By Topic

Universal Piecewise Linear Prediction Via Context Trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kozat, S.S. ; T. J. Watson Res. Center, Yorktown Heights ; Singer, A.C. ; Zeitler, G.C.

This paper considers the problem of piecewise linear prediction from a competitive algorithm approach. In prior work, prediction algorithms have been developed that are "universal" with respect to the class of all linear predictors, such that they perform nearly as well, in terms of total squared prediction error, as the best linear predictor that is able to observe the entire sequence in advance. In this paper, we introduce the use of a "context tree," to compete against a doubly exponential number of piecewise linear (affine) models. We use the context tree to achieve the total squared prediction error performance of the best piecewise linear model that can choose both its partitioning of the regressor space and its real-valued prediction parameters within each region of the partition, based on observing the entire sequence in advance, uniformly, for every bounded individual sequence. This performance is achieved with a prediction algorithm whose complexity is only linear in the depth of the context tree per prediction. Upper bounds on the regret with respect to the best piecewise linear predictor are given for both the scalar and higher order case, and lower bounds on the regret are given for the scalar case. An explicit algorithmic description and examples demonstrating the performance of the algorithm are given.

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 7 )