By Topic

Theory of the Stochastic Resonance Effect in Signal Detection: Part I—Fixed Detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hao Chen ; Syracuse Univ., Syracuse ; Varshney, P.K. ; Kay, S.M. ; Michels, J.H.

This paper develops the mathematical framework to analyze the stochastic resonance (SR) effect in binary hypothesis testing problems. The mechanism for SR noise enhanced signal detection is explored. The detection performance of a noise modified detector is derived in terms of the probability of detection PD and the probability of false alarm PFA. Furthermore, sufficient conditions are established to determine the improvability of a fixed detector using SR. The form of the optimal noise pdf is determined and the optimal stochastic resonance noise pdf which renders the maximum PD without increasing PFA is derived. Finally, an illustrative example is presented where performance comparisons are made between detectors where the optimal stochastic resonance noise, as well as Gaussian, uniform, and optimal symmetric noises are applied to enhance detection performance.

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 7 )