By Topic

Walsh-Like Nonlinear Phase Orthogonal Codes for Direct Sequence CDMA Communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Akansu, A.N. ; New Jersey Inst. of Technol., Newark ; Poluri, R.

Walsh codes are perfectly orthogonal binary (antipodal) block codes that found their use in many popular applications over several decades including synchronous multiuser communications. It is well known in the literature that they perform poorly for the case of asynchronous multiuser communications. Therefore, the near-orthogonal and nonlinear phase gold codes with better performance are the preferred user codes in asynchronous direct sequence code division multiple access (DS-CDMA) communications standards. In this paper, we relaxed linear phase requirements and new sets of Walsh-like nonlinear phase binary orthogonal user codes (transforms) are obtained for asynchronous and synchronous spread spectrum multiuser communications. It is shown that the proposed binary user code family outperforms the Walsh codes significantly and they match in performance with the popular, nearly orthogonal gold codes closely for asynchronous multiuser communications in additive white Gaussian noise (AWGN) channels. It is also shown that all of the binary code families considered in this paper performed comparable for Rayleigh flat-fading channels. We present in this paper that there are a good number of such desirable code sets available in the binary sample space with different transform sizes. These new binary sets with good performance and flexible code lengths might help us to improve the spread spectrum multiplexing capabilities of future wireline and wireless CDMA communications systems.

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 7 )