By Topic

Noise-Robust Automatic Speech Recognition Using a Predictive Echo State Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Skowronski, Mark D. ; Florida Univ., Gainesville ; Harris, J.G.

Artificial neural networks have been shown to perform well in automatic speech recognition (ASR) tasks, although their complexity and excessive computational costs have limited their use. Recently, a recurrent neural network with simplified training, the echo state network (ESN), was introduced by Jaeger and shown to outperform conventional methods in time series prediction experiments. We created the predictive ESN classifier by combining the ESN with a state machine framework. In small-vocabulary ASR experiments, we compared the noise-robust performance of the predictive ESN classifier with a hidden Markov model (HMM) as a function of model size and signal-to-noise ratio (SNR). The predictive ESN classifier outperformed an HMM by 8-dB SNR, and both models achieved maximum noise-robust accuracy for architectures with more states and fewer kernels per state. Using ten trials of random sets of training/validation/test speakers, accuracy for the predictive ESN classifier, averaged between 0 and 20 dB SNR, was 81plusmn3%, compared to 61plusmn2% for an HMM. The closed-form regression training for the ESN significantly reduced the computational cost of the network, and the reservoir of the ESN created a high-dimensional representation of the input with memory which led to increased noise-robust classification.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:15 ,  Issue: 5 )