By Topic

Linear Spectral Transformation for Robust Speech Recognition Using Maximum Mutual Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Donghyun Kim ; Korea Univ., Seoul ; Yook, Dongsuk

This paper presents a transformation-based rapid adaptation technique for robust speech recognition using a linear spectral transformation (LST) and a maximum mutual information (MMI) criterion. Previously, a maximum likelihood linear spectral transformation (ML-LST) algorithm was proposed for fast adaptation in unknown environments. Since the MMI estimation method does not require evenly distributed training data and increases the a posteriori probability of the word sequences of the training data, we combine the linear spectral transformation method and the MMI estimation technique in order to achieve extremely rapid adaptation using only one word of adaptation data. The proposed algorithm, called MMI-LST, was implemented using the extended Baum-Welch algorithm and phonetic lattices, and evaluated on the TIMIT and FFMTIMIT corpora. It provides a relative reduction in the speech recognition error rate of 11.1% using only 0.25 s of adaptation data.

Published in:

Signal Processing Letters, IEEE  (Volume:14 ,  Issue: 7 )