By Topic

A Force-Reflection Algorithm for Improved Transparency in Bilateral Teleoperation With Communication Delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The problem of stable force-reflecting teleoperation with time-varying communication delay is addressed in this paper. A new force-reflection (FR) algorithm is presented, where the environmental force reflected on the master side can be altered depending on the forces applied by the human operator. This alteration is not felt by the human operator; however, it makes the FR safe in the sense it does not destroy the stability of the teleoperator system. In particular, using input-to-output stability small gain approach, it is shown that the overall stability in the teleoperator system with the force-reflecting algorithm proposed can be achieved theoretically for arbitrarily low damping on the master side and arbitrarily high FR gain. The simulation results presented confirm that the proposed FR algorithm significantly improves the stability/performance characteristics of the force-reflecting teleoperator system in the presence of time-varying communication delays.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:12 ,  Issue: 3 )