By Topic

Knowledge Discovery by Mining Association Rules and Temporal-Spatial Information from Large-Scale Geospatial Image Databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chi-Ren Shyu ; Dept. of Comput. Sci., Univ. of Missouri, Columbia, MO ; Klaric, M. ; Scott, G. ; Mahamaneerat, W.K.

Discovering relevant knowledge from large-scale geospatial image databases is challenging because of the complexity of describing visual semantics, the computational cost of processing petabytes of data, and the difficulty in summarizing and presenting knowledge. In this paper, we revisit a selective set of core data mining algorithms, namely association rules mining, spatial mining, and temporal mining. We then customize these algorithms using visual content and potential objects extracted from geospatial image databases with other relevant information, such as text-based annotations. Queries utilizing the mining results are also discussed in this paper. These mining and query processing algorithms play an important role in GeoIRIS- Geospatial Information Retrieval and Indexing System.

Published in:

Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006. IEEE International Conference on

Date of Conference:

July 31 2006-Aug. 4 2006