By Topic

Negative DC Prebreakdown Phenomena and Breakdown-Voltage Characteristics of Pressurized Carbon Dioxide up to Supercritical Conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

This paper deals with the experimental results on prebreakdown phenomena and breakdown voltage characteristics of a negative dc point-to-plane gap in-compressed carbon dioxide up to the supercritical pressure as the first step to develop a plasma reactor with supercritical carbon dioxide. The gap length and the curvature radius of the point tip were 200 and around 35 mum, respectively. The experimental results show the following: 1) corona discharge preceding complete breakdown is observed more clearly in liquid and supercritical fluid than in gas; 2) the estimated discharge onset voltage according to the streamer theory is in fairly good agreement with the measured breakdown voltage in the gas density region of 0.1-30 kg ldr m-3; 3) the breakdown mechanism in liquid can be classified into two categories: bubble-triggered breakdown at lower pressure and non bubble-triggered breakdown at higher pressure; 4) the breakdown mechanism in supercritical fluid is similar to that in higher pressured liquid; and 5) the density and temperature dependences of breakdown voltage in liquid and supercritical fluid are related closely with the breakdown mechanism.

Published in:

Plasma Science, IEEE Transactions on  (Volume:35 ,  Issue: 3 )