By Topic

Path-Based Buffer Insertion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sze, C.N. ; IBM Austin Research Laboratory, Austin ; Alpert, C.J. ; Jiang Hu ; Weiping Shi

Along with the progress of very-large-scale-integration technology, buffer insertion plays an increasingly critical role on affecting circuit design and performance. Traditional buffer insertion algorithms are mostly net based and therefore often result in suboptimal delay or unnecessary buffer expense due to the lack of global view. In this paper, we propose a novel path-based-buffer-insertion (PBBI) scheme which can overcome the weakness of the net-based approaches. We also discuss some potential difficulties of the PBBI approach and propose solutions to them. A fast estimation on buffered delay is employed to improve the solution quality. Gate sizing is also considered at the same time. Experimental results show that our method can efficiently reduce buffer/gate cost significantly (by 71% on average) when compared to traditional net-based approaches. To the best of our knowledge, this is the first work on path based buffer insertion and simultaneous gate sizing.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:26 ,  Issue: 7 )