By Topic

Local Variance-Controlled Forward-and-Backward Diffusion for Image Enhancement and Noise Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yi Wang ; Wuhan Univ., Wuhan ; Liangpei Zhang ; Pingxiang Li

In order to improve signal-to-noise ratio (SNR) and contrast-to-noise ratio, this paper introduces a local variance-controlled forward-and-backward (LVCFAB) diffusion algorithm for edge enhancement and noise reduction. In our algorithm, an alternative FAB diffusion algorithm is proposed. The results for the alternative FAB algorithm show better algorithm behavior than other existing diffusion FAB approaches. Furthermore, two distinct discontinuity measures and the alternative FAB diffusion are incorporated into a LVCFAB diffusion algorithm, where the joint use of the two measures leads to a complementary effect for preserving edge features in digital images. This LVC mechanism adaptively modifies the degree of diffusion at any image location and is dependent on both local gradient and inhomogeneity. Qualitative experiments, based on general digital images and magnetic resonance images, show significant improvements when the LVCFAB diffusion algorithm is used versus the existing anisotropic diffusion and the previous FAB diffusion algorithms for enhancing edge features and improving image contrast. Quantitative analyses, based on peak SNR, confirm the superiority of the proposed LVCFAB diffusion algorithm.

Published in:

Image Processing, IEEE Transactions on  (Volume:16 ,  Issue: 7 )