Cart (Loading....) | Create Account
Close category search window

Object Trajectory-Based Activity Classification and Recognition Using Hidden Markov Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bashir, F.I. ; Univ. of Illinois, Chicago ; Khokhar, A.A. ; Schonfeld, D.

Motion trajectories provide rich spatiotemporal information about an object's activity. This paper presents novel classification algorithms for recognizing object activity using object motion trajectory. In the proposed classification system, trajectories are segmented at points of change in curvature, and the subtrajectories are represented by their principal component analysis (PCA) coefficients. We first present a framework to robustly estimate the multivariate probability density function based on PCA coefficients of the subtrajectories using Gaussian mixture models (GMMs). We show that GMM-based modeling alone cannot capture the temporal relations and ordering between underlying entities. To address this issue, we use hidden Markov models (HMMs) with a data-driven design in terms of number of states and topology (e.g., left-right versus ergodic). Experiments using a database of over 5700 complex trajectories (obtained from UCI-KDD data archives and Columbia University Multimedia Group) subdivided into 85 different classes demonstrate the superiority of our proposed HMM-based scheme using PCA coefficients of subtrajectories in comparison with other techniques in the literature.

Published in:

Image Processing, IEEE Transactions on  (Volume:16 ,  Issue: 7 )

Date of Publication:

July 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.