By Topic

Incorporating Term Selection Into Separable Nonlinear Least Squares Identification Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this paper, a method for the integration of the Least absolute shrinkage and selection operator (Lasso) into Separable Nonlinear Least Squares (SNLS) algorithms is presented. Lasso is reformulated as an equality constrained linear regression. The original SNLS problem is then solved subject to the resulting equality constraints. Simulations using the proposed algorithm to fit a Laguerre model to the output of a linear system are used to demonstrate its performance.

Published in:

2007 Canadian Conference on Electrical and Computer Engineering

Date of Conference:

22-26 April 2007