Cart (Loading....) | Create Account
Close category search window
 

Grid Architecture for High Performance Computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Derbal, Y. ; Ryerson Univ., Toronto

In theory, a grid can harness the power of an arbitrarily large collection of computing resources to meet the needs of compute intensive high performance computing (HPC) applications such as finite element model (FEM) simulations. However, the realization of such potential faces many challenges; including: (1) the degree of coupling between the components of an HPC application; (2) the asynchronous and high latency nature of the grid communication medium; and (3) the presence of distinct administrative domains. High latency poses the most serious limitation to the potential use of grids for HPC applications. In this respect, the paper reports new results on the ongoing development of a service oriented grid architecture to support the execution of HPC applications, and in particular the simulation of large scale dynamical systems. At the heart of the architecture is a computational model that ties the domain decomposition of the simulated system to the topology of the grid and the data exchange process in order to minimize the effect of latency. The paper provides an experiment-based comparative analysis of the proposed grid-HPC computational model against a sequential computing model for a two dimensional heat diffusion process simulation.

Published in:

Electrical and Computer Engineering, 2007. CCECE 2007. Canadian Conference on

Date of Conference:

22-26 April 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.