By Topic

Parallel Genetic-Algorithm Optimization of Shaped Beam Coverage Areas Using Planar 2-D Phased Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Villegas, F.J. ; Aerosp. Corp., Los Angeles

A parallel genetic algorithm (GA) optimization tool has been developed for the synthesis of arbitrarily shaped beam coverage using planar 2D phased-array antennas. Typically, the synthesis of a contoured beam footprint using a planar 2D array is difficult because of the inherently large number of degrees of freedom involved (in general, the amplitude and phase of each element must be determined). We make use of a parallel GA tool in this study to compensate for this aspect of the design problem. The algorithm essentially compares a desired pattern envelope with that of trial arrays, and quantifies the effectiveness or desirability of each test case via a fitness function. The GA uses this information to rank and select subsequent arrays over a given number of generations via the conventional stochastic operators, i.e., selection, crossover, and mutation. Each fitness evaluation of a trial pattern is done on a node of the aerospace fellowship cluster supercomputer, which increases the speed of the algorithm linearly with the number of nodes. Because of the continuous nature of the parameters for this optimization problem, a real parameter encoding scheme is employed for the GA chromosome in order to avoid the quantization errors associated with a binary representation. A benchmark 10 times 10 (100) element array is employed, and various results of optimized coverage patterns are shown herein to illustrate the effectiveness and validity of the technique.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:55 ,  Issue: 6 )